Radial and Nonradial Effects of Radial Fields in Frenet Frame

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radial and Nonradial Minimizers for Some Radially Symmetric Functionals

In a previous paper we have considered the functional V (u) = 1 2 ∫ RN | grad u(x)| dx+ ∫ RN F (u(x)) dx subject to ∫ RN G(u(x)) dx = λ > 0 , where u(x) = (u1(x), . . . , uK(x)) belongs to H 1 K(R ) = H(R ) × · · · × H(R) (K times) and | grad u(x)| means ∑K i=1 | gradui(x)|. We have shown that, under some technical assumptions and except for a translation in the space variable x, any global min...

متن کامل

Arbitrary Fields of View in Radial Imaging

P. E. Larson, P. T. Gurney, D. G. Nishimura Electrical Engineering, Stanford University, Stanford, CA, United States Introduction Radial imaging, or projection reconstruction (PR), acquires data on radial spokes, enabling short TEs as well as being robust to motion, making it suitable for short-T2 and dynamic imaging applications. It requires longer scan times than Cartesian trajectories for th...

متن کامل

Flexibility of Variations in Radial and Non-Radial Data Envelopment Analysis ‎Models

One of the major problems in Data Envelopment Analysis (DEA) is to determine the projection of inefficient Decision Making Units (DMUs) into the efficient frontier. In conventional DEA models, inputs and outputs of inefficient DMUs alter arbitrarily for reaching to the efficient frontier. Nevertheless, sometimes the ability of DMUs is defined and restricted. Moreover, there are situations in th...

متن کامل

On the Schrödinger-poisson-slater System: Behavior of Minimizers, Radial and Nonradial Cases

This paper is motivated by the study of a version of the so-called Schrödinger-Poisson-Slater problem: −∆u+ ωu+ λ „

متن کامل

Adaptive receptive fields for radial basis functions

We propose a network architecture based on adaptive receptive fields and a learning algorithm that combines both supervised learning of centers and unsupervised learning of output layer weights. This algorithm causes each group of radial basis functions to adapt to regions of the clustered input space. Networks produced by this algorithm appear to have better generalization performance on predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Research

سال: 2011

ISSN: 1916-9647,1916-9639

DOI: 10.5539/apr.v3n1p2